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ABSTRACT 

We have found all irreducible, anomaly-free and complex representa- 

tions of SU(N) up to dimension 4 x log and SU(16). None of these repre- 

sentations are asymptotically free. For each SU(N), we have given a com- 

plete list of complex reducible representations which satisfy both asymp- 

totic and anomaly freedom. Applications of such solutions~ are briefly 

discussed. 
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I. INTRODUCTION 
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To construct a gauge model unifying the strong, electromagnetic and 

weak interactions, one needs several constraints to be satisfied by the re- 

presentation. Georgi and Glashow', Georgi* and Gell-Mann, Ramond and Slansky3 

have suggested the existence of complex representations as a criterion for 

grand unified theories. Complex representations can be found in gauge groups 

SU(N), S0(4N+2) and E 6' 

Renormalizability of gauge theories necessitates use of anomaly-free 

representations. 4 Among the groups with complex representations, S0(4N+2) 

and E 6 are free of anomaly. For SU(N) one usually needs to combine several 

representations to cancel anomalies with each other. Actually there are two 

different ways of getting anomaly-free and complex representations in SU(N). 

One method is to find anomaly-free, irreducible and complex representations 

(AFICR), and the other is to form anomaly-free combinations with several 

complex representations. 

The highly reducible nature of the fermion representations is cited' 

as one of the least attractiw? features of the SU(N) models. For this reason, 

it may be interesting to find AFICR in the SU(N) group. Okubo6 and Cox7 have 

already observed that none is known with dimensionality below D = 3 x lo5 for 

SU(N) with N : 6. 

On the other hand, recent developments of grand unified theories 8 and 

preen dynamics' require comprehensive list of the anomaly-free, reducible and 

complex representations (AFRCR) for model building. 

In this paper, AFICR and AFRCR are presented. A t"norough search for 
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AFICR has been carried out with dimensions less than D = 4 x 10’ in SU(N) for 

N less than 17. The smallest AFICR occurs in SU(S) with D = 374,556. The next 

lowest AFICR is in SU(5) with D = 1,357,824. Altogether twenty-eight AFICR are 

presented in Section II. These representations are only of mathematical curiosity 

and do not have any practical use due to their awesome dimensionality. In addi- 

tion, they usually contain color exotics, i.e., those representations other than 

1, 2, and z* of the color group SU(3). Furthermore a close examination of the 

branching rules contained in Section III reveals that the SU(6) representation 

with D = 374,556 can accommodate only one generation of quarks and leptons, 

along with many exotic particles. 

In Section IV, we obtain for every SU(N) all AFRCR which also satisfy 

the asymptotic freedom condition. The requirement of asymptotic freedom is 

needed here to limit the number of dimensions of reducible representations. 

II. ANOMALY-FR~E IRREDUCIBLE COMPLEX REPRESENTATIONS (AFIcR). 

Irreducible representations of SU(N) will be specified by a set of in- 

tegers (X1,A2,“‘,ANm1), where Xi equals the number of columns of the Young 

tableau with i boxes.1’ This notation agrees with the Cartan labels for the 

highest weight of an irreducible representation. 

Complex representations in SU(N) satisfy (X1,X2,“‘,XN-1) # (hNwl,...,hl). 

Only very few of them are anomaly-free and irreducible. There are no complex re- 

presentations in SU(2). For SU(3) and SU(4), no AFICR exist below D = 4 x 10q. 

Table I summarizeg all AFICR in SU(N) with dimensionality up to D = 4 x log and 

N 5 16. Conjugate representations are not repeated in Table I. 

The smallest AFICR mentioned before corresponds to (0,5,0,0,4) of SU(6) 
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in the Cartan labels. The next lowest AFICR is (0,7,3,3) of SU(S). For 

clarity, we show the corresponding Young tableaux in Fig. 1. 

III. BRANCHING RULES. 

To study the branching rules of the smallest AFICR (0,5,0,0,4) of SU(6!, 

we follow the method of elementary multiplets suggested by Sharp and Patera. 11 

For N(6) + SU(5) x U(l), there are ten elementary multiplets. We use 

the notation (XlX2h3X4A5; CZ~CL~~~C~~, ya), where Xi and oi are the Cartan labels 

for SU(6) and SU(5) respectively, and Ya is the htiercharge of lla(~l) label. 

They are 

A; = (10000; 0000, - 5) (1) 

A; = (10000; 1000, 1) (2) 

A; = (01000; 1000, -4) (3) 

A; = (01000; 0100, 2) (4) 

A; = (00100; 0100, -3) (5) 

A; = (OOiOO; 0010, 3) (6) 

A; = (00010; 0010, -2) (7) 

A; = (00010; 0001, 4) (8) 

A; = (00001, 0001, -1) (9) 

A; = (00001; 0000, 5) (10) 
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Table II shows the branching rules of SU(6) to SU(5) with dimension, 

anomaly in SU(S), and Us(l) hypercharge. The anomaly and hypercharge in 

Table II add up zero as expected. 

To reduce SU(5) further into SU(3) x SlJ(z) x Ub(J), there 

are ten elementary multiplets (the notation is (ilX2X3A4; ala2,",Yh) where li 

oi and a are the Cartan labels for SU(S), SU(3) and'SU(2) respectively; 

Yb is the hypercharge of Ub(l) normalized to have integer value). 

A; = (1000; 10, 0, 2) (11) 

A; = (1000; 00, 1, -3) (12) 

A; = (0100; 01, 0, 4) (13) 

A; = (0100; 10, 1, -1) (14) 

A; = '(0100; 00, 0, -6) (15) 

A; = (0010; 00, 0, 6) (1’5) 

A; = (0010; 01, 1, 1) (17) 

A; = (0010; 10, 0, -4) (18) 

A; = (0001; 00, 1, 3) (1% 

A; = (0001; 01, 0, -2) (20) 

In addition to those listed above, three more composite elementary 

factors are necessary and they are: 

Al3 = (1010; 01, 0, -2) (21) 

Al4 = (1001; 00, 0, 0) (22) 

A24 = (0101; 10, 0, 2) . (23) 
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The following pairs of elementary factors are incompatible: 11 Al3 

.with Ai or A 24 
; A l4 with A2 or A3 2; and A 24 2 with A3 or A13. 2 

The electric charge generator 12 can generally be a linear combination 

of T 3, Ya and Yb: 

Q = T3 + AYa + BYb (24) 

where A and B are to be determined to give correct charge assignment. An 

exhaustive search was made for possible values of A and B which give correct 

charges for 15 chiral fields (u d)L, ucL, dCL, (v e)I,, e’,,. Correct charge 

assignment for one generation can be made with nine different choices of A and B 

in Eq. (24), but there are huge numbers of exotic states. 

IV. ANOMALY-FREE REDUCIBLE COMPLEX REPRESENTATIONS (AFRCR). 

All of AFICR in Table I are of enormous dimensions and therefore are 

only of mathematical interest. In physically interesting theories, the dimen- 

sions of representations can be limited by the constraint of asymptotic freedom. 13 

This condition gives the following group theoretical constraint: 14 

;. T2(Ri) 5 + C2W 
1 

(25) 

where Ri is the irreducible representation of fermions; C2 is the quadratic 

Casimir operator; G is the adjoint representation; and T2 is defined by 

T2(R) dim(G) Z C2(R) dim(R) . (26) 

There are nine irreducible and complex representations of SU(N), Rl,R2”‘Rg, 

which satisfy the asymptotic freedom. They are defined in Table III along 

with the associated properties of the representation such as the dimension, 



T2> the value Of the Casimir operator C2, the anomaly A and the maximum allowed 

value of N for asymptotic freedom. 

Among simple groups, the only complex ~irreducible representations, which 

are both anomaly-free and asymptotic-free, are the following: 16-, 126-‘, 144-dimen- 

sional representations of SO(10); the lowest dimensional spinorial representations 

of SO(14) and SO(18); and 27-dimensional representation of E6. The maximum multi- 

plicities of these representations bounded by the asymptotic freedom are: 22, 1, 

1; 8, 2; and 22 respectively. There are no complex irreducible representations 

which are both anomaly-free and asymptotic-free in SU(N). 

Relaxing the condition of irreducibility 15 we have considered reducible 

complex representations 1 ni Ri, ni being integers, which are both anomaly-free 

and asymptotic-free. Anomaly-free complex representations which satisfy asymp- 

totic freedom are greatly constrained, and a complete list of such representa- 

tions in SU(N) is reported here. We give a separate list of AFRCR with asymp- 

totic freedom that contain tensor representations of rank at most 2 for the 

obvious reason of simplicity. 

Tables IV and V show all anomaly-free and asymptotic-free combinations 

of the following form: 

ng q 13 n8 
El 

(27) 

where n “8 and xi 

fILedon as” 

g are integers, whose magnitudes are constrained by asymp- 

totic 

lngl(N+2) + /n81(N-2) + Ii91 T 11N. (28) 

Negative values of ni are to be interpreted as the appearance of ni times of 

the associated complex conjugate representations. Table IV contains all 
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,AFRCR with asymptotic freedom for arbitrarily large values of N, whereas 

Table V includes only those for finite range of N. 

Except for the solutions in Tables IV and V, all other anomaly-free 

and asymptotic-free representations contain at least one term whose tensor 

representation has the rank greater than two. Such solutions however exist 

only for N 5 17, and are listed in Table VI for 3 s N I 7, in Table VII for 

8 5 N s 10, and in Table VIII for 11 s N 5 17. Again the negative ni’s in 

these Tables represent the occurrence of the associated complex conjugate 

representation. 

It is to be emphasized that all anomaly-free and asymptotic-free com- 

plex representations for N > 18 are only of the type listed in Tables IV and V~. 

Since there are a number of representations which differ only- in the 

number of occurrence of R8 and Rg we group these different possibilities 

collectively by P. The variable P takes integer values between finite limits 

as shown in the last column of Tables VI, VII and VIII. The 9, appearing in 

the tenth column of these Tables is the maximum magnitude of the multiplicities 

of the associated representation consistent with the asymptotic freedom. 

V. COMMENTS ON RESULTS. 

We have found both irreducible and reducible representations which are 

complex and anomaly-free. Con!plex irreducible representations can indeed be 

anomaly-free, although the number of such examples is very limited. 

All AFICR with D T 4 x lo9 are listed in Table I up to SU(16). None 

of these representations satisfy the asymptotic freedom. 
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All complex fermion representations in SU(N) which satisfy the con- 

straints of asymptotic freedom and anomaly cancellation are listed in 

Tables IV - VIII. The most general solution subject to the anomaly-free 

condition can be given by the sum of a complex representation Ca listed in 

Tables IV - VIII and a pseudoreal representation Ra whose general form is 

9 

Ra= 1 mi(Ri@Rl)@ 1 
i=l j njrj ’ c-1 

Here (Ri) are the nine complex representations defined in Table !I1 and j 

runs over all pseudoreal irreducible representations r.. 
1 

The multiplicity 

mi and nj are non-negative integers; and the condition for the general solu- 

tion,C +R a, to be asymptotically free is simply 16 
a 

T2(C,) + T2(Ra) 5 ‘il-” . (30) 

Our results will be useful in model building within the context of grand uni- 

fied theories (GUT) with elementary scalar fields, where all gauge interac- 

tions are unified into a simple gauge group and the constraints to the model 

include the two conditions we have imposed. Furthermore, we expect the role 

of pseudoreal representations to be minimal in view of Georgi’s rules 2 for 

grand unification. Usually additional constraints are needed for GUT to in- 

sure that fexmions transform as 1,3, and 3* only under the sU(3) color group. 3 

In dynamical models, a new gauge interaction is introduced which be- 

comes strong at an energy scale much above presently available energies. 

These kinds of interactions usually have a simple compact group structure of 

the kinds studied here. Again the fermions must satisfy the conditions of 

asymptotic freedom and anomaly cancellation with respect to this new gauge 

interaction to be physically meaningful. Furthermore, the real representation 
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content is relatively unimportant. In these models it is perfectly sensible 

to regard the ordinary quarks and leptons as bound states of more fundamental 

objects (preens); and the additional constraint that the representation is 

totally antisymmetric in SU(N) GUT need not apply. 

Thus both schemes of unification requires the same minimal conditions 

on the fermionic content: 13 

(a) existence of complex representations, 

(b) asymptotic freedom, 

(c) anomaly cancellation. 

We have enumerated all solutions to these conditions in this paper. 
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14. In the special case of equality in Eq. (25) an additional group theo- 
retical constraint (arising in higher orders) 

_- ““3 N2 + + N 1 T2(Ri) + 2 1 C (R.) T (R.) < 0 

Ri Ri ’ ’ ’ 1 

must be satisfied for the theory to be asymptotically free. We will 
however present all solutions of Eq. (25). The two loop beta function 
(from which the above constraint follows) was first calcuiated by IV. E. 
Caswell, Phys. Rev. Lett. 33, 244 (1974). 

15. Recently A. N. Schellekens has also independently compiled reducible 
anomaly-free and complex representations with a limit on dimension, 
instead of the asymptotic freedom requirement imposed here. 

16. The same comment as in Ref. 14 applies in the special case of equality 
in Eq. (28). 
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TABLE I. Anomaly free irreducible complex representations in SU(K). Neight 

is given by (X1,X2,. . . ,hel), where Xi equals the number of Young 

tableau with i boxes. This notation agrees with the Cartan labels 

for the highest weight of an irreducible representation. 

su (N) Keight Dimension 

5 07 3 3 1357824 

5 18 15 3048474 

5 77 151 1390411776 

6 05 0 0 4 374556 

6 05 3 2 3 192615423 

6 06 0 3 3 28514304 

6 0100 0 8 108645537 

6 0100 2 7 1000276992 

6 15 5 0 5 832637988 

6 16 11 5 128035908 

6 27 10 7 303771468 

7 00 6 3 0 2 1189284096 

7 01 6 0 2 2 1540923384 

7 02 4 2 0 3 1747519488 

7 03 3 113 1911816192 

7 04 2 0 2 3 823350528 

7 13 4 0 0 5 1941877938 

7 15 10 15 1207195704 

8 00 4 0 0 12 37081044 

8 013 0 0 0 3 12360348 
8 04 10 0 2 3 1646701056 
8 15 0 0 0 15 1207195704 
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TABLE I (Cant ‘d) 

SJ PO Neight Dimension 

10 000300002 19423404 

10 030100013 3080563200 
10 131000005 2615590692 

12 02001000003 266982,144 
14 0010010000002 72813312 
16 001100000000003 371804160 
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TABLE II. Branching of the smallest anomaly free complex representation 

(4 0 0 5 0) of N(6) into SLl(S)xUa(l). SU(5) weight is given 

by (X1,...> X4) in Cartan labels. 

SU(S) weight dimension anomaly in W(5) Ya 

0050 1176 -1050 -30 

1050 4410 -3339 -24 

2050 10780 -4851 -18 

3050 21560 1232 -12 

4050 38220 30303 -6 

0041 1470 -1323 -24 

1041 5600 -4320 -18 

2041 13860 -6633 -12 

3041 28000 200 -6. 

4041 50050 35750 0 

0032 1260 -1287 -18 

1032 4900 -4445 -12 

2032 12320 -7832 - 6 

3032 25200 -4500 0 

4032 45500 22425 6 

0023 840 -1032 -12 

1023 3360 -3816 -6 

2023 8624 -7700 0 

3023 17920 -8448 6 

4023 32760 5148 12 

0014 420 -627 -6 

1014 1750 -2500 0 

2014 4620 -5643 6 

3014 9800 -8260 12 

4 0 14 18200 -4810 18 

0005 126 -225 0 

1005 560 -984 6 

2005 1540 -2453 12 

3005 3360 -4248 18 

4005 6370 -4732 24 
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TABLE IV. Complex representations of W(N) of the form of Eq. (26) which 

satisfy the constraints of anomaly cancellation and asymptotic 

freedom for arbitrary large N. The representations R7, R8 and R9 

are defined in Table III. In a given row, the representation 

"-iR7 + ngRg + "9Rt is denoted by the integer n7, ng and "9. 

If ni < 0, n.R 1 i is to be interpreted as \ni/RT. 8 gives twice 

the sum of the T2(R) for given anomaly free combinations. The 

last column gives the maximum multiplicity of the representation 

(denoted by f,) consistent with the constraint of asymptotic free- 

dom and its dependence on N. Except for the first row, N is greater 
than or equal to 5. 

"7 "8 K9 6 9. 

1' 0 

0 1 

1 1 

1 2 

1 3 

1 4 

1 -1 

1 -2 

1 -3 

1 -4 

1 -5 

2 1 

2 3 

2 -1 

Nf4 2(N+3) 

N-4 2(N-3) 

2N 4N 

3N-4 6~-6 

4~-8 SN-12 

5N-12 lON-18 

8 2N-k8 

'-N+12 3N-2+IN-121 

-2(~-8) 4N-4+2/N-81 

-3N+20 

-4(~-6) 

3Nf4 

5N-4 

N+12 

5N-6+13N-201 

bN-a+4]~-61 

6~+6 

lON-6 

4Ni14 

9.=2 (N=3), e-3 (4<N<7), -- 
9~4 (8<N<29), k=5 (k3d) 

e=13 (N=5), e=11 (~=6), 

?a=9 (N=7), e=8 (ScN<9), 

e=7 (lOcN<14), e=6 (15<N<36) - - 
k=5 (N>37) 

9.=2 

e=2 (Ncl21, L=l (N,13) 

P.=l 

L=l 

e=3 (5<N<lO), 9.=4 (ll<Nc39) 

e=5 (N,40) 

P,=2 (N-5, N,43) 

9.=3 (6<N<42) 

!,=2 (N<7), J.=3 (N=8) 

e=2 (9<N<40), k=l (Ii,411 

e-2 (N<lO), P,=l (N,ll) 

9.=2 (Nc7), F.=l (~28) 

a=1 

a=1 

e=l (NL9), 9,=2 (N,lO) 
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TABLE IV. (cont'd) 

"7 "8 n 9 t? e 

2 -3 -N+20 

2 -5 -3~+28 

3 1 4N+8 

3 2 5N+4 

3 -1 2N+l6 

3 -2 N+20 

3 -4 -N+28 

3 -5 -2N+32 

4 1 5Nf12 

4 -1 3N+20 

4 -3 Nf28 

4 -5 -N+36 

5' -1 4N+24 

5 -2 3N+28 

5 -3 2N+32 

5 -4 Nf36 

5N-2+/N-201 

7N-6+j3N-281 

8N+12 

lONf6 

6Nf20 

6~+22 

7N-2+IN-281 

8N-4+21N-161 

lON+18 

8~+2 6 

8N+30 

9N-2+jN-361 

lONf32 

lON+34 

lONf36 

lON+38 

I=1 (5<Nrll, N,45) 

9.=2 (12<N<44) - - 
I=1 

9.=1 

a=i (~26) 

9.=1 

9.=1 

e=l (~26) 

e=i (~26) 

k=l (N>18) 

X=1 (N>9) 

!Z=l (N,lO) 

P.=l (N,12) 

Pv=l (N>32) 

i=l (N,34) 

9.=i (~~36) 

I=1 (N,38) 
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TABLE V. Complex representations of SU(N) of the form n7R7 @ n8R8 @ tigRi 

which satisfy Eq. (25) but only for a finite range of N. The notations for 

the first three columns are the same as ir. Table IV. Column 4 gives the range 

of N for which an asymptotic-free solution exists. The maximum multiplicity 

of each of these solutions is 9. = 1. N is greater than or equal to 5. 

n7 "8 n 9 N 

1 5 6N-16 

1 6 7N-20 

1 7 8N-24 

1 8 9N-28 

1 9 lON-32 

1 -6 -5N+28 

1 -7 -6N+32 

1 -8 -7N+36 

1 -3 -8N+40 

1 -10 -9N+44 

1 -11 -ION+48 

1 -12 -llN+52 

1 -13 -12X+56 

1 -14 -13N+60 

2 5 7N-12 

2 -7 -5N+36 

2 -9 -7N+44 

2 -11 -9N+52 

3 -7 -4N+40 

3 -6 -5N+44 

4 -7 -3N+44 

5 -6 -N+44 

N 5 24 

N 2 10 

IN 5 7 

N<6 

N=5 

N 5 38 

N 5 14 

R 5 10 

Ns8 

N<6 

N56 

N=5 

N=5 

N=5 

N<-6 

N 15 s 

N58 

NZ6 

7 5Ns16 

7sNzlO 

13 N 16 5 : 

42 N 46 5 s 
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TABLE VI. Complex solutions in SU(N) with 3 5 N 2 7 which cor,tain at least 

one irreducible representation of rank greater than 2. 

,...,R9 are defined in Table III. 

TOW, t~'f',5',:~z::~I:~i~~'~~Ri is denot.ed by the integer nl, . . .ii. a ~~~~~, if 

ni c 0, niRi is interpreted as InilRl. When a number of solutions of similar 

form exists, they a.re sometimes denoted collec~tively by introducing an integer 

variable P in the soluti.on. In these cases, the values of P which give solutions 

are given in the last column. The maximum multiplicity of the solution 9. is 

given in the 10th column. 

"1 "2 "3 =4 %i "6 "7 % "9 a. P 

SU(3) 
0 

0 

W(4) 

0 

0 

0 

0 

0 

SU(5) 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-I 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

1 
0 

-1 

-1 

0 
0 

1 
0 

0 

0 

-1 

-2 

1 

-1 

1 

0 

0 

0 

-1 

-1 

-1 

-1 

0 

0 

-1 

0 

0 

1 

1 

2 

0 

1 

-1 

-1 

-2 

0 

0 

1 

0 

1 

1 
2 

1 

-1 

-1 

-2 

-2 

-3 

0 

0 

0 

0 

0 

0 

0 

P 

P 

P 

P 

P 

0 
P 

P 

P 

0 

P 

P 

0 

7 

0 

7 

6 

1 

15 

9 

6-1P 

15-1P 

6-1P 

16-1P 

7-1P 

1 
-2-1P 

-3-1P 

15-1P 

25 

3-1P 

12-1P 

11 

1 

1 

2 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-6SpSg 

-1<p<2 

-1<p<3 

-4<p<8 

-4<p<8 



-20. 

TABLE VI. -.co"t'd. 

"1 "2 "3 "4 ?j "6 "7 "8 "9 p. P 

3J(6) 
0 

0 

0 

0 

C 

0 

0 

SU(7) 
0 

0 

0 

0 

0 

0 

0 

0 

0 

C 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-2 

-3 

-4 

-5 

-6 

-6 

-4 

-5 

-3 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

-1 

-1 

-1 

0 

1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 -2 0 0 0 

0 0 1 0 0 0 

0 

0 

1 

2 

3 

1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

1 

1 

P 4-2P 1 -4-<pr5 

P 27-2P 1 -1SP<3 

2 17-2P 1 -1sp<4 

P 7-2P 1 -1<p<4 

P -3-2P 1 -2<p<1 

P -6-2P 1 -4cPs2 

P 14-2P 1 -1<p<3 

P l-3P 

P 2-3P 

P l-3P 

P 3-3P 

P 4-3P 

P 6-3P 

P s-3P 

P lo-3P 

P l-3P 

1 9 

P -3-3P 

P -l-3P 

P -5-3P 

P -9-3P 

1 

1 

2 

3 

4 

6 
1 

1 

1 

2 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

1 

2 

1 

7 

-2-Jw2 

-8sP<-4,4rPs8 

p--2, -3, 3 

p=-1, 2 
p=l 

p=o 

-liPi 
-1<pl1 

P=-5, -3, 3, 5, 7 

P=-1, 1 

P=-5,-4,-2,-1,2,4,5 

P= 1 

P=-3,-2,-1,1,2,3,5 

P=-1,1,3 

OSPSl 

P -7-3P 

P -13-3P 

-3CPi3 

-2SPS2 

-5SPS4 

-8SPS-4, 2sPS6 
-36pSl 

P=6 
-6Sp<--2 lCp<5 p=5 

P=O, -1 

-&S-4, lSPS5 

‘! 3(P<-0 
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TABLE :'I. - co"t 'd 

"1 "2 "3 "4 "5 "6 "7 "8 "9 ' P 

(SU(7)) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

3 

-1 

-2 

1 

0 

0 

-4 

3 

4 

-2 

-3 

1 

2 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 P -15-3P 1 -7GPL4 

1 P -17-3P 1 -6SPg2 

2 P -2O-3P 1 -8sPs3 

2 P -18-3P 1 P=-7,-5,-3,-1,l 

2 P -24-3P 1 -9CPS3 

-1 P lo-3P 1 OLPSl 

-1 0 12 1 

-1 P 19-3P 1 -1CPS4 

-2 P 16-3P 1 -1lPS5 

-2 1 11 1 

-2 P 26-3P 1 P=-1,1,3,5 

-2 0 28 1 

-3 P 31-3P 1 -1SPS4 

-3 0 29 1 

-3 P 35-3P 1 OSPb2 
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TABLE VII. Complex solutions in W(N) with 8<N110 which contains at least 

oen irreducible representation of rank greater than 2. The notation is the 

same as that of Table VI. 

"1 "2 "3 n4 "5 "6 "7 "8 "9 

SU(8) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-2 

-3 

-4 

-3 

-4 

0 

-2 

-4 

-1 

-3 

1 

-1 

-2 

2 

1 

-3 

-2 

1 

2 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

2 

1 

2 

1 

2 

2 

1 

2 

-1 

-2 

-3 

-3 

-3 

P 

P 

P 

P 

P 

P 

-1 

P 

-1 

P 

P 

P 

P 

P 

P 

P 

P 

1 

P 

P 

5-4P 

lo-4P 

3-4P 

8-4~ 

15-4P 

20-4P 

1 

-2-4P 

0 

-7-4P 

-9-4P 

-17-4P 

-19-4P 

-14-4P 

-22-42 

-29-4P 

27-4P 

30 

31-4P 

26-4P 

P 41-4P 

e P 
- 

1 

2 

4 

1 

2 

1 

1 

1 

1 

1 

1 

2 

1 

1 

2 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-6<P<-3, 4<P<7 -- -_ 
P=-2, -1,2,3 

P=O,l 

?=-3,-1,3,5 

P=l 

-3<P<3 - - 
-1<P<2 -- 
-2cPcj -- 

l<P<3 - - 

-5<P<-1, l<P<4 -- -- 
P=O 

-7<P<-3, 2<P<5 -- -- 
-2<P<l - - 
-3<P<l - - 
-8<P<-2, l<P<4, p=4 -- -_ 

p=-l,o 
-7<P<3 - - 

P=-5,-3.-1,l 

-7<Pc2 - - 
-8<P<2 -- 

O<P<3 -- 

-l<P<b - - 
O<P<l - - 
O<P<l - - 
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TABLE VII. cont'd 

n1 II2 II3 II4 II5 II6 l-l, l-l8 II9 f. 
- 

W(9) 

-1 

-2 

-2 

0 

1 

-1 

-1 

0 

0 

1 

1 

-1 

0 

0 

0 

-2 

0 

-1 

1 

0 

1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

-1 

-1 

-1 

-1 

-2 

-2 

-2 

-2 

-2 

-3 

-3 

-3 

0 

-1 

0 

-1 

-2 

0 

1 

-1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

1 

2 

0 

1 

1 

1 

1 

2 

1 

1 

2 

1 

P 

P 

0 

P 

P 

P 

P 

P 

P 

P 

0 

0 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

5-5P 

lo-5P 

1 

9-5P 

4-5P 

14-5P 

l-5P 

5-56 

la-5P 

13-5P 

0 

10 

14-5P 

l-5P 

27-5P 

-3-5P 

-4-5P 

-8-5P 

-9-5P 

-8-5P 

-18-5P 

-17-5P 

-17-5P 

-22-5P 

1 

2 

1 

1 

1 

2 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

P 

-4<P<-1, 2<Pc5 -- -- 
P=O,l 

P=-1,1,3 

-5<P<-2, 4<P<7 -- -_ 
P=-1,2,3 

P=O,l 

-3<P<3 -- 
-2<P<4 -- 
-2<P<2 - - 
-3<P<4 -- 

P=-3,-1,1,3,s 

O<P<2 -- 

O<P<3 -- 
-l<P<l -- 
P=1,2,4 

-l<P<l -- 
-5<P<-2, 2<Pc5 -- -- 
P=-l,O,l 

-5<P<3 -- 
-3<P<l - - 

P=-3,-l,l 

-5<Pc2 -- 
-4<P<l - - 
-6<P<3 -- 
-7<P<3 -- 
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TABLE VII. cont'd 

? n2 "3 "4 "5 "6 "7 "8 n9 a. P 

W(9)) 

-1 0 

0 0 

0 0 

-1 0 

0 0 

10 

-1 0 

0 0 

SU(10) 

-1 

-1 

-1 

0 

0 

-1 

-1 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

1 

-1 

-2 

1 

0 

2 

0 

0 

1 

-1 

-1 

-1 

-1 
-2 

-2 

-2 

0 

-1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

3 

2 

-1 

-1 

-2 

-2 

-3 

0 

1 

0 

0 

1 

1 

2 
1 

0 

2 

2 

2 

1 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

P 

0 

0 
P 

P 

P 

P 

P 

P 

-21-5P 

-3o-5P 

-35-5P 

27-5P 

31-5P 

12-5P 

31-5P 

21-5P 

14-6P 

0-6P 

0-6P 

14-6P 

0-6P 

14 

0 
14-6P 

2%6P 

0-6P 

-14-6P 

-14-6P 

-28-6P 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

1 

1 
1 

1 

1 

1 

1 

1 

-5<P<l - - 

-6<P<l - - 

-7<P<l - - 

O<P<Z -- 

-1~P<6 -- 

O<P<2 - - 

O<P<5 -- 

O<P<l -- 

-2<P<4 -- 

-3<P<3 -- 

-l<P<l - - 

-4<P<-1, 3<P<6 -- -- 

P=O,1,2 

-5<P<-2, 2<P<5 -- -- 
p--1,0,1 

-2<P<4 - - 
P=-1,1,3,5 

P=-1,l 

-3<P<_l 

-5<P<3 -- 
-7<P<3 - - 
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TABLE VII. cont'd 

? "2 "3 "4 "5 "6 "7 "8 "9 P. P 

( SU(10) ) 

10 0 0 0 0 1P -28-6P 1 -5<P<l _ _ 

0 o-l 0 0 0 3 P -28-6P 1 -5<P<l -- 

0 0 10 0 0 2 P -42-6P 1 -7<P<l -- 

-1 0 1 0 0 0 -1 0 14 1 

1 0 -1 0 0 0 -1 0 14 1 

0 0 -2 0 0 0 -I. 0 42 1 

0 0 2 0 0 o-3 P 14-6P 1 O<P<2 -- 
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TABLE VIII.. Complex solutions in SU(N) with 11 5 N 5 17 which contain at 

least one irreducible Sepresentation of rank greater than 2. No solutions 

of this type exist for N > 18. The notation is the same as that of Table VI. 

"1 "2 "3 "4 "5 "6 "7 "8 "9 9. P 

SU(11) 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

SU(12) 
0 

0 

0 

0 

0 

0 

SU(13) 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

-1 

-2 

-2 

-2 

-1 

-1 

1 

0 

-1 

2 

-1 

-1 

-1 

-1 

1 

-1 

-1 

-1 

-1 

-1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

2 

2 

3 

1 

-2 

-2 

-3 

0 

1 

2 

3 

1 

-2 

0 

1 

2 

3 

1 

P 

P 

P 

P 

P 

P 

1 

P 

P 

P 

0 

P 

0 

P 

P 

P 

P 

P 

0 

P 

P 

P 

P 

P 

28-7P 

13-7P 

ZO-7P 

S-7P 

2s-7P 

40-7P 

3 

-lO-7P 

-2S-7P 

-3s-7P 

2 

so-7P 

5 

27-8P 

ll-8P 

-s-8P 

-21-8P 

-43-8P 

59 

3s-9P 

18-9P 

l-9P 

-16-9P 

-52-9P 

1 e54 

1 OZPI2 

1 -45P<-1, 31P<6 

2 05P52 
1 -4<p5-1 2<p54 

2 P=O,l 

1 OSP53 

1 P=1,3 
1 

- 1 '-4sp<3 

1 -45P$l 
1 -6<p<-2 

1 

1 05P54 

1 

1 -3cP<6 

1 -34PS4 

1 -35PS3 

1 -3SPSl 

1 -6sP51 

1 

1 -2$&j 

1 -25~54 

1 -25P52 

1 -25P<l 
1 -6<p<l 



TABLE VIII. .- cont'd. 

"1 "2 "3 "4 "5 "6 "7 n8 "9 P. P 

SU(14) 
0 

0 

0 

0 

0 

SU(15) 
0 

0 

0 

0 

SU(16) 
0 

0 

0 

0 

SU(17) 
0 

0 

0 

0 

0 -1 0 0 0 0 P 44-1OP 1 -2sPs6 

0 -1 0 0 0 1 P 26-1OP 1 -2ZpZ4 

0 -1 0 0 0 2 P a-1OP 1 -2SP<2 
0 -1 0 0 0 3 P -lO-1OP 1 -2iPSl 

0 -1 0 0 0 -1 P 62-IOP 1 a<-P<5 

0 -1 0 0 0 0 P s4-IlP 1 -l<p<S 

0 -1 0 0 Q 1 P 3s-1lP 1 -1TPl.4 

0 -1 0 0 0 2 P 16-1lP 1 -l<P<Z 

0 -1 0 0 0 3 P -3-1lP 1 -l<P<l 

0 -1 0 0 0 0 P 6S-12P 1 oipr.5 - 

0 -1 0 0 0 1 P 45-12P 1 'asp<-4 

0 -1 0 0 0 2 P 2s-12P 1 O<P<-2 

0 -1 0 Q Q 3 P s-12P 1 -1sp<-1 

0~ -1 0 0 0 0 P 77-13P 1 O<Pr2 

0 -1 0 0 0 1 P 56-13P 1 OCP<3 

0 -1 0 0 0 2 P 3s-13P 1 asps2 

0 -1 0 0 0 3 P 14-13P 1 O'P<-1 



Fig. 1 (a) (O,S,O,O,4) of SU(6) with D = 374,556; 

(b) (0,7,3,3) of SU(S) with D = 1,357,824. 

These are the two lowest dimensional AFICR 


